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The author gives a mathematical model of the output characteristics of an automobile suspension for
evaluating its elastic properties by magnitudes of the parameters that are characteristic of the actual
operating conditions.

The development of the structures of automobiles involves improvement of their units, including the
suspension, and is carried out in the direction of the most complete conformity of their characteristics to the
operating conditions of the automobiles.

In evaluating the degree of perfection of an automobile’s suspension and the conformity of its char-
acteristics to the requirements placed on it the need arises to solve many interconnected problems, and by
nontrivial methods too. The prerequisites outlined in [1] for a systems analysis in evaluating vibroloading and
ways of improving quality determine the expediency of the use of mathematical methods of the theory of
experiment design. To obtain a mathematical model of output characteristics that would allow evaluation of
the elastic properties of automobile suspensions by magnitudes of the parameters and their changes that are
characteristic of the actual operating conditions, it is expedient to apply methods of active experiment design.

An easy-to-use polynomial-type model was selected as the mathematical model. Having one and the
same type of equations and invariable independent factors, the model makes it possible to easily compare
different types of suspensions, having selected their qualitative and quantitative indicators as the response
function.

In the first stage of the investigations a scheme classifying the models of suspensions in cushioning
systems was developed. Then, based on an analysis of this information, the minimum required volume of
tests was determined, designs of experiments were drawn up, independent factors were selected, and response
functions and their characteristics were substantiated. Proceeding from the available possibilities and require-
ments placed on controlled parameters, the following independent factors were selected: the microroughnesses
of the road x1, the pressure in the tire x2, the normal rigidity of the elastic element with allowance for the
interboard asymmetry x3, the speed of the automobile x4, and the coefficient of inelastic resistance x5. An
example of coding the values of the independent factors (a working matrix) for a torsional suspension of a
multidrive automobile is given in Table 1.

As response functions we took (in percent) the root-mean-square value of the vertical accelerations
Y1 (100% = 0.6g), the lateral-angular accelerations Y2 (100% = 0.2g), and the axial-angular accelerations Y3

(100% = 0.15g).
The second stage of the investigations was devoted to the development, construction, and evaluation

of several versions of suspension regression models obtained as a result of implementation of an active ex-
periment according to different designs. Since the single-factor relations between the independent parameters
and the selected response functions turned out to be significantly nonlinear, the possibility of using experi-
ment designs of higher order was studied.
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Developed experiments according to designs on two levels and five factors [2, 3] and the performed
comparative analysis of the results obtained showed that the regression model

Y = b0 +  ∑ 

i=1

5

 bi xi +  ∑ 

j,i=1

5

 bij xi xj

is most convenient for evaluating suspension models and that the application of a higher-order model is not
justified because of an increase in the volume of the experiment and the processing with an insignificant
improvement in accuracy.

To construct the selected model, an experiment according to the design 25−1 was realized. Results of
the experiment were processed on a computer. Using the program developed we calculated a regression equa-
tion for each response function and checked the adequacy of the model (by F, i.e., by the Fisher number); we
calculated the confidence interval for the regression coefficients (by t, i.e., by the Student number) and threw
away insignificant factors. Table 2 gives as an example calculated data for the regression coefficients of the
response functions on belonging to the input parameters x1, x2, x3, x4, and x5.

From the data of Table 2 we can obtain regression equations for any of the prescribed response func-
tions in polynomial form. Thus, for example, for the response function Y1(σz), in relation to the factors inves-
tigated

Y1 = 28.1 − 2.37x1 + 9.75x2 + 0.06x3 + 1.06x4 − 0.43x5 − 0.81x1x2 − 0.12x1x3 − 0.12x1x4 + 0.12x1x5 −

TABLE 1. Working Matrix

Factor Upper level Lower level Ground level Interval of variation
of the factor

x1, σq, m 0.22 0.18 0.2 0.2
x2, P0, MPa 5.0 3.0 4.5 1.5
x3, Cn, N/mm 7.2 2.4 4.8 2.4
x4, v, km/h 52 24 38 14
x5, η 0.47 0.20 0.34 0.13

TABLE 2. Matrix of the Coefficients

Parameters
Regression coefficients

Y1 Y2 Y3

x0 28.1 20.4 24.0
x1 –2.37 –0.65 –0.90
x2 9.75 8.09 7.40
x3 0.06 –0.71 –0.03
x4 1.06 9.03 –2.09
x5 –0.43 –2.84 6.46

x1x2 –0.81 0.53 –0.46
x1x3 –0.12 –0.78 –1.03
x1x4 –0.12 –1.15 –0.21
x1x5 0.12 –0.15 –0.78
x2x3 0.12 –0.40 –0.71
x2x4 0.75 6.46 –1.15
x2x5 0.12 0.84 3.40
x3x4 –0.06 –0.21 –0.46
x3x5 –0.06 –0.21 –0.40
x4x5 –0.06 –1.21 –0.59
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 − 0.12x2x3 + 0.75x2x4 + 0.12x2x5 − 0.06x3x4 + 0.06x3x5 − 0.06x4x5 .

If the code variables (see Table 1) calculated as the ratio of the difference of the running value of the
nominal level of the factor to the magnitude of the interval of variation of this factor are substituted into the
regression dependence of Y1, we obtain an interpolation formula for determining the radial deformation that
occurs in complex force loading of a wheel on a bench with a prescribed combination of factor levels.

Similarly we can obtain calculated values of other output parameters of Y2 and Y3.
The interpolation formulas make it possible to calculate the magnitude of the investigated parameter

of the response function, now using the natural values of the variable independent factors rather than the
coded values. For example, for calculating σz in the case of tests the interpolation dependence has the form

Y1 = 8.1275 + 0.475σq − 0.078P0 + 0.416Cn + 0.2v − 0.259η − 0.02σqP0 − 0.26σqCn − 0.026σqv −

 − 0.26σqη + 0.0025P0Cn − 0.0015P0v + 0.00025P0η − 0.001Cnη + 0.01vCn − 0.001vη .

The obtained relations of the force and deformation parameters are quite explicable physically and are
confirmed by single-factor dependences.

Such an analysis of the functions of the output characteristics of a suspension by a set of output
parameters using the evaluation of the calculated regression polynomial dependences can serve as a basis for
certification of rigidity output characteristics of different models of suspensions with the aim of comparing
them. Furthermore, regression models result from conducting a limited number of experiments (16 instead of
many hundreds) and provide a basis for improvement of suspensions and optimization of the output parame-
ters for a set of independent input factors with allowance for their mutual effect. In the case of the solution
of particular problems associated with the determination of certain specific deformation force parameters, the
number of experiments can be reduced.

NOTATION

σq, root-mean-square values of the microroughnesses (q is the microroughness height); Cn, normal
rigidity of the elastic element; v, speed of the automobile; η, coefficient of inelastic resistance; Y, response
function (root-mean-square value of the accelerations); b0, residual term for x0 = 1 (initial conditions); z, ver-
tical accelerations; q = 9.81 m/sec2, free-fall acceleration.
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